If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-0.08x^2+1.6x+10=0
a = -0.08; b = 1.6; c = +10;
Δ = b2-4ac
Δ = 1.62-4·(-0.08)·10
Δ = 5.76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1.6)-\sqrt{5.76}}{2*-0.08}=\frac{-1.6-\sqrt{5.76}}{-0.16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1.6)+\sqrt{5.76}}{2*-0.08}=\frac{-1.6+\sqrt{5.76}}{-0.16} $
| X+40+3x20=180 | | X+15/16=2x | | 10-4t=12 | | 3x+14+2x-62=180 | | 2x(x-5)+4(x-5)=0 | | 100=60t+5t^2 | | (99-2X)+y=180 | | 12x-10=14+16 | | 12/8/x=6 | | 24/3=64/x | | 2(w+6)=17 | | (1/3x-1)(1/2x+7=0 | | 5a-9=4a-7 | | 2(5n+3)=3(2n+1) | | 25n+3)=3(2n+1) | | 295n+3)=3(2n+1) | | 6(4n-7)=4(2n+1) | | 8p-3(p+1)=12 | | 93=80-z | | 5(2a+1)+4a=33 | | 6(x+3)-4x=32 | | 3/4x+5/6x=16 | | 7x15+60=20x | | 60+7x15=20x | | -2(m=-2) | | 6q-54=-6 | | 7k+6=41 | | 4(a+30=3(a+2) | | 4(2t+5)=3(t-4) | | 3(2a+3)=5(a-6) | | 9(3a+7)=6(a+5) | | 4(2a+5)-2(a-3)=12 |